Duality Gap
   HOME

TheInfoList



OR:

In
optimization problem In mathematics, computer science and economics, an optimization problem is the problem of finding the ''best'' solution from all feasible solutions. Optimization problems can be divided into two categories, depending on whether the variables ...
s in
applied mathematics Applied mathematics is the application of mathematical methods by different fields such as physics, engineering, medicine, biology, finance, business, computer science, and industry. Thus, applied mathematics is a combination of mathematical s ...
, the duality gap is the difference between the primal and dual solutions. If d^* is the optimal dual value and p^* is the optimal primal value then the duality gap is equal to p^* - d^*. This value is always greater than or equal to 0 (for minimization problems). The duality gap is zero if and only if
strong duality Strong duality is a condition in mathematical optimization in which the primal optimal objective and the dual optimal objective are equal. This is as opposed to weak duality (the primal problem has optimal value smaller than or equal to the dual ...
holds. Otherwise the gap is strictly positive and
weak duality In applied mathematics, weak duality is a concept in optimization which states that the duality gap is always greater than or equal to 0. That means the solution to the dual (minimization) problem is ''always'' greater than or equal to the solution ...
holds. In general given two
dual pair In mathematics, a dual system, dual pair, or duality over a field \mathbb is a triple (X, Y, b) consisting of two vector spaces X and Y over \mathbb and a non-degenerate bilinear map b : X \times Y \to \mathbb. Duality theory, the study of dual ...
s separated
locally convex space In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vec ...
s \left(X,X^*\right) and \left(Y,Y^*\right). Then given the function f: X \to \mathbb \cup \, we can define the primal problem by :\inf_ f(x). \, If there are constraint conditions, these can be built into the function f by letting f = f + I_\text where I is the
indicator function In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , one has \mathbf_(x)=1 if x\i ...
. Then let F: X \times Y \to \mathbb \cup \ be a
perturbation function In mathematical optimization, the perturbation function is any function which relates to primal and dual problems. The name comes from the fact that any such function defines a perturbation of the initial problem. In many cases this takes the form ...
such that F(x,0) = f(x). The ''duality gap'' is the difference given by :\inf_ (x,0)- \sup_ F^*(0,y^*)/math> where F^* is the
convex conjugate In mathematics and mathematical optimization, the convex conjugate of a function is a generalization of the Legendre transformation which applies to non-convex functions. It is also known as Legendre–Fenchel transformation, Fenchel transformation ...
in both variables. In computational
optimization Mathematical optimization (alternatively spelled ''optimisation'') or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfi ...
, another "duality gap" is often reported, which is the difference in value between any dual solution and the value of a feasible but suboptimal iterate for the primal problem. This alternative "duality gap" quantifies the discrepancy between the value of a current feasible but suboptimal iterate for the primal problem and the value of the dual problem; the value of the dual problem is, under regularity conditions, equal to the value of the ''
convex relaxation Convex or convexity may refer to: Science and technology * Convex lens, in optics Mathematics * Convex set, containing the whole line segment that joins points ** Convex polygon, a polygon which encloses a convex set of points ** Convex polytope ...
'' of the primal problem: The convex relaxation is the problem arising replacing a non-convex feasible set with its closed
convex hull In geometry, the convex hull or convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space ...
and with replacing a non-convex function with its convex closure, that is the function that has the epigraph that is the closed convex hull of the original primal objective function.


References

{{Reflist, 30em Linear programming Convex optimization